Перевод: со всех языков на английский

с английского на все языки

practicable patent

  • 1 патент на осъществимо изобретение

    practicable patent
    practicable patents

    Български-Angleščina политехнически речник > патент на осъществимо изобретение

  • 2 патент на осуществимое изобретение

    Универсальный русско-английский словарь > патент на осуществимое изобретение

  • 3 Lauste, Eugène Augustin

    [br]
    b. 1857 Montmartre, France d. 1935
    [br]
    French inventor who devised the first practicable sound-on-film system.
    [br]
    Lauste was a prolific inventor who as a 22-year-old had more than fifty patents to his name. He joined Edison's West Orange Laboratory as Assistant to W.K.L. Dickson in 1887; he was soon involved in the development of early motion pictures, beginning an association with the cinema that was to dominate the rest of his working life. He left Edison in 1892 to pursue an interest in petrol engines, but within two years he returned to cinematography, where, in association with Major Woodville Latham, he introduced small but significant improvements to film-projection systems. In 1900 an interest in sound recording, dating back to his early days with Edison, led Lauste to begin exploring the possibility of recording sound photographically on film alongside the picture. In 1904 he moved to England, where he continued his experiments, and by 1907 he had succeeded in photographing a sound trace and picture simultaneously, each image occupying half the width of the film.
    Despite successful demonstrations of Lauste's system on both sides of the Atlantic, he enjoyed no commercial success. Handicapped by lack of capital, his efforts were finally brought to an end by the First World War. In 1906 Lauste had filed a patent for his sound-on-film system, which has been described by some authorities as the master patent for talking pictures. Although this claim is questionable, he was the first to produce a practicable scund-on-film system and establish the basic principles that were universally followed until the introduction of magnetic sound.
    [br]
    Bibliography
    11 August 1906, with Robert R.Haines and John S.Pletts, British Patent no. 18,057 (sound-on-film system).
    Further Reading
    The most complete accounts of Lauste's work and the history of sound films can be found in the Journal of the Society of Motion Picture (and Television) Engineers.
    For an excellent account of Lauste's work, see the Report of the Historical Committee, 1931, Journal of the Society of Motion Picture Engin eers 16 (January):105–9; and Merritt Crawford, 1941, Journal of the Society of Motion Picture Engineers, 17 (October) 632–44.
    For good general accounts of the evolution of sound in the cinema, see: E.I.Sponable, 1947, Journal of the Society of Motion Picture Engineers 48:275–303 and 407–22; E.W.Kellog, 1955, Journal of the Society of Motion Picture Engineers 64:291–302 and 356–74.
    JW

    Biographical history of technology > Lauste, Eugène Augustin

  • 4 Talbot, William Henry Fox

    [br]
    b. 11 February 1800 Melbury, England
    d. 17 September 1877 Lacock, Wiltshire, England
    [br]
    English scientist, inventor of negative—positive photography and practicable photo engraving.
    [br]
    Educated at Harrow, where he first showed an interest in science, and at Cambridge, Talbot was an outstanding scholar and a formidable mathematician. He published over fifty scientific papers and took out twelve English patents. His interests outside the field of science were also wide and included Assyriology, etymology and the classics. He was briefly a Member of Parliament, but did not pursue a parliamentary career.
    Talbot's invention of photography arose out of his frustrating attempts to produce acceptable pencil sketches using popular artist's aids, the camera discura and camera lucida. From his experiments with the former he conceived the idea of placing on the screen a paper coated with silver salts so that the image would be captured chemically. During the spring of 1834 he made outline images of subjects such as leaves and flowers by placing them on sheets of sensitized paper and exposing them to sunlight. No camera was involved and the first images produced using an optical system were made with a solar microscope. It was only when he had devised a more sensitive paper that Talbot was able to make camera pictures; the earliest surviving camera negative dates from August 1835. From the beginning, Talbot noticed that the lights and shades of his images were reversed. During 1834 or 1835 he discovered that by placing this reversed image on another sheet of sensitized paper and again exposing it to sunlight, a picture was produced with lights and shades in the correct disposition. Talbot had discovered the basis of modern photography, the photographic negative, from which could be produced an unlimited number of positives. He did little further work until the announcement of Daguerre's process in 1839 prompted him to publish an account of his negative-positive process. Aware that his photogenic drawing process had many imperfections, Talbot plunged into further experiments and in September 1840, using a mixture incorporating a solution of gallic acid, discovered an invisible latent image that could be made visible by development. This improved calotype process dramatically shortened exposure times and allowed Talbot to take portraits. In 1841 he patented the process, an exercise that was later to cause controversy, and between 1844 and 1846 produced The Pencil of Nature, the world's first commercial photographically illustrated book.
    Concerned that some of his photographs were prone to fading, Talbot later began experiments to combine photography with printing and engraving. Using bichromated gelatine, he devised the first practicable method of photo engraving, which was patented as Photoglyphic engraving in October 1852. He later went on to use screens of gauze, muslin and finely powdered gum to break up the image into lines and dots, thus anticipating modern photomechanical processes.
    Talbot was described by contemporaries as the "Father of Photography" primarily in recognition of his discovery of the negative-positive process, but he also produced the first photomicrographs, took the first high-speed photographs with the aid of a spark from a Leyden jar, and is credited with proposing infra-red photography. He was a shy man and his misguided attempts to enforce his calotype patent made him many enemies. It was perhaps for this reason that he never received the formal recognition from the British nation that his family felt he deserved.
    [br]
    Principal Honours and Distinctions
    FRS March 1831. Royal Society Rumford Medal 1842. Grand Médaille d'Honneur, L'Exposition Universelle, Paris, 1855. Honorary Doctorate of Laws, Edinburgh University, 1863.
    Bibliography
    1839, "Some account of the art of photographic drawing", Royal Society Proceedings 4:120–1; Phil. Mag., XIV, 1839, pp. 19–21.
    8 February 1841, British patent no. 8842 (calotype process).
    1844–6, The Pencil of Nature, 6 parts, London (Talbot'a account of his invention can be found in the introduction; there is a facsimile edn, with an intro. by Beamont Newhall, New York, 1968.
    Further Reading
    H.J.P.Arnold, 1977, William Henry Fox Talbot, London.
    D.B.Thomas, 1964, The First Negatives, London (a lucid concise account of Talbot's photograph work).
    J.Ward and S.Stevenson, 1986, Printed Light, Edinburgh (an essay on Talbot's invention and its reception).
    H.Gernsheim and A.Gernsheim, 1977, The History of Photography, London (a wider picture of Talbot, based primarily on secondary sources).
    JW

    Biographical history of technology > Talbot, William Henry Fox

  • 5 Meisenbach, Georg

    SUBJECT AREA: Paper and printing
    [br]
    b. 1841 Nuremberg, Germany
    d. 12 December 1912 Munich, Germany
    [br]
    German engraver, inventor of the first commercially exploitable halftone printing process.
    [br]
    Trained in Nuremberg as a copper-plate engraver, Meisenbach moved to Munich in 1873 and established the first zincographic engraving business in Germany. In 1879 he began experimenting with halftone reproductions and in May 1882 he took out a German patent which described a single-line screen made from the proof of an engraved plate ruled with lines. The screen was then placed before a photographic positive of a picture and the two were photographed together. Approximately half-way through the exposure the screen was turned 90 degrees so that the lines crossed. A halftone negative was thus produced, from which could be made a zinc printing block. The full details of the process were not revealed in the patent so that trade competition would be limited. It was the first commercially practicable halftone process. Ill health forced Meisenbach to retire from the business in 1891, by which time his process was being superseded by Ives's cross-line process.
    [br]
    Bibliography
    May 1882, German patent no. 22,444 (halftone printing process). 1882, British patent no. 2,156.
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E.Epstean, New York.
    G.Wakeman, 1973, Victorian Book Illustration (a popular account of the introduction of halftone to England).
    JW

    Biographical history of technology > Meisenbach, Georg

  • 6 Gestetner, David

    SUBJECT AREA: Paper and printing
    [br]
    b. March 1854 Csorna, Hungary
    d. 8 March 1939 Nice, France
    [br]
    Hungarian/British pioneer of stencil duplicating.
    [br]
    For the first twenty-five years of his life, Gestetner was a rolling stone and accordingly gathered no moss. Leaving school in 1867, he began working for an uncle in Sopron, making sausages. Four years later he apprenticed himself to another uncle, a stockbroker, in Vienna. The financial crisis of 1873 prompted a move to a restaurant, also in the family, but tiring of a menial existence, he emigrated to the USA, travelling steerage. He began to earn a living by selling Japanese kites: these were made of strong Japanese paper coated with lacquer, and he noted their long fibres and great strength, an observation that was later to prove useful when he was searching for a suitable medium for stencil duplicating. However, he did not prosper in the USA and he returned to Europe, first to Vienna and finally to London in 1879. He took a job with Fairholme \& Co., stationers in Shoe Lane, off Holborn; at last Gestetner found an outlet for his inventive genius and he began his life's work in developing stencil duplicating. His first patent was in 1879 for an application of the hectograph, an early method of duplicating documents. In 1881, he patented the toothed-wheel pen, or Cyclostyle, which made good ink-passing perforations in the stencil paper, with which he was able to pioneer the first practicable form of stencil duplicating. He then adopted a better stencil tissue of Japanese paper coated with wax, and later an improved form of pen. This assured the success of Gestetner's form of stencil duplicating and it became established practice in offices in the late 1880s. Gestetner began to manufacture the apparatus in premises in Sun Street, at first under the name of Fairholme, since they had defrayed the patent expenses and otherwise supported him financially, in return for which Gestetner assigned them his patent rights. In 1882 he patented the wheel pen in the USA and appointed an agent to sell the equipment there. In 1884 he moved to larger premises, and three years later to still larger premises. The introduction of the typewriter prompted modifications that enabled stencil duplicating to become both the standard means of printing short runs of copy and an essential piece of equipment in offices. Before the First World War, Gestetner's products were being sold around the world; in fact he created one of the first truly international distribution networks. He finally moved to a large factory to the north-east of London: when his company went public in 1929, it had a share capital of nearly £750,000. It was only with the development of electrostatic photocopying and small office offset litho machines that stencil duplicating began to decline in the 1960s. The firm David Gestetner had founded adapted to the new conditions and prospers still, under the direction of his grandson and namesake.
    [br]
    Further Reading
    W.B.Proudfoot, 1972, The Origin of Stencil Duplicating London: Hutchinson (gives a good account of the method and the development of the Gestetner process, together with some details of his life).
    H.V.Culpan, 1951, "The House of Gestetner", in Gestetner 70th Anniversary Celebration Brochure, London: Gestetner.
    LRD

    Biographical history of technology > Gestetner, David

  • 7 Daguerre, Louis Jacques Mandé

    [br]
    b. 18 November 1787 Carmeilles-en-Parisis, France
    d. 10 July 1851 Petit-Bry-sur-Marne, France
    [br]
    French inventor of the first practicable photographic process.
    [br]
    The son of a minor official in a magistrate's court, Daguerre showed an early aptitude for drawing. He was first apprenticed to an architect, but in 1804 he moved to Paris to learn the art of stage design. He was particularly interested in perspective and lighting, and later showed great ingenuity in lighting stage sets. Fascinated by a popular form of entertainment of the period, the panorama, he went on to create a variant of it called the diorama. It is assumed that he used a camera obscura for perspective drawings and, by purchasing it from the optician Chevalier, he made contact with Joseph Nicéphore Niepce. In 1829 Niepce and Daguerre entered into a formal partnership to perfect Niepce's heliographic process, but the partnership was dissolved when Niepce died in 1833, when only limited progress had been made. Daguerre continued experimenting alone, however, using iodine and silver plates; by 1837 he had discovered that images formed in the camera obscura could be developed by mercury vapour and fixed with a hot salt solution. After unsuccessfully attempting to sell his process, Daguerre approached F.J.D. Arago, of the Académie des Sciences, who announced the discovery in 1839. Details of Daguerre's work were not published until August of that year when the process was presented free to the world, except England. With considerable business acumen, Daguerre had quietly patented the process through an agent, Miles Berry, in London a few days earlier. He also granted a monopoly to make and sell his camera to a Monsieur Giroux, a stationer by trade who happened to be a relation of Daguerre's wife. The daguerreotype process caused a sensation when announced. Daguerre was granted a pension by a grateful government and honours were showered upon him all over the world. It was a direct positive process on silvered copper plates and, in fact, proved to be a technological dead end. The future was to lie with negative-positive photography devised by Daguerre's British contemporary, W.H.F. Talbot, although Daguerre's was the first practicable photographic process to be announced. It captured the public's imagination and in an improved form was to dominate professional photographic practice for more than a decade.
    [br]
    Principal Honours and Distinctions
    Officier de la Légion d'honneur 1839. Honorary FRS 1839. Honorary Fellow of the National Academy of Design, New York, 1839. Honorary Fellow of the Vienna Academy 1843. Pour le Mérite, bestowed by Frederick William IV of Prussia, 1843.
    Bibliography
    14 August 1839, British patent no. 8,194 (daguerrotype photographic process).
    The announcement and details of Daguerre's invention were published in both serious and popular English journals. See, for example, 1839 publications of Athenaeum, Literary Gazette, Magazine of Science and Mechanics Magazine.
    Further Reading
    H.Gernsheim and A.Gernsheim, 1956, L.J.M. Daguerre (the standard account of Daguerre's work).
    —1969, The History of Photography, rev. edn, London (a very full account).
    J.M.Eder, 1945, History of Photography, trans. E. Epstean, New York (a very full account).
    JW

    Biographical history of technology > Daguerre, Louis Jacques Mandé

  • 8 Ayrton, William Edward

    [br]
    b. 14 September 1847 London, England
    d. 8 November 1908 London, England
    [br]
    English physicist, inventor and pioneer in technical education.
    [br]
    After graduating from University College, London, Ayrton became for a short time a pupil of Sir William Thomson in Glasgow. For five years he was employed in the Indian Telegraph Service, eventually as Superintendent, where he assisted in revolutionizing the system, devising methods of fault detection and elimination. In 1873 he was invited by the Japanese Government to assist as Professor of Physics and Telegraphy in founding the Imperial College of Engineering in Tokyo. There he created a teaching laboratory that served as a model for those he was later to organize in England and which were copied elsewhere. It was in Tokyo that his joint researches with Professor John Perry began, an association that continued after their return to England. In 1879 he became Professor of Technical Physics at the City and Guilds Institute in Finsbury, London, and later was appointed Professor of Physics at the Central Institution in South Kensington.
    The inventions of Avrton and Perrv included an electric tricycle in 1882, the first practicable portable ammeter and other electrical measuring instruments. By 1890, when the research partnership ended, they had published nearly seventy papers in their joint names, the emphasis being on a mathematical treatment of subjects including electric motor design, construction of electrical measuring instruments, thermodynamics and the economical use of electric conductors. Ayrton was then employed as a consulting engineer by government departments and acted as an expert witness in many important patent cases.
    [br]
    Principal Honours and Distinctions
    FRS 1881. President, Physical Society 1890–2. President, Institution of Electrical Engineers 1892. Royal Society Royal Medal 1901.
    Bibliography
    28 April 1883, British patent no. 2,156 (Ayrton and Perry's ammeter and voltmeter). 1887, Practical Electricity, London (based on his early laboratory courses; 7 edns followed during his lifetime).
    1892, "Electrotechnics", Journal of the Institution of Electrical Engineers 21, 5–36 (for a survey of technical education).
    Further Reading
    D.W.Jordan, 1985, "The cry for useless knowledge: education for a new Victorian technology", Proceedings of the Institution of Electrical Engineers, 132 (Part A): 587– 601.
    G.Gooday, 1991, History of Technology, 13: 73–111 (for an account of Ayrton and the teaching laboratory).
    GW

    Biographical history of technology > Ayrton, William Edward

  • 9 Davidson, Robert

    [br]
    b. 18 April 1804 Aberdeen, Scotland
    d. 16 November 1894 Aberdeen, Scotland
    [br]
    Scottish chemist, pioneer of electric power and builder of the first electric railway locomotives.
    [br]
    Davidson, son of an Aberdeen merchant, attended Marischal College, Aberdeen, between 1819 and 1822: his studies included mathematics, mechanics and chemistry. He subsequently joined his father's grocery business, which from time to time received enquiries for yeast: to meet these, Davidson began to manufacture yeast for sale and from that start built up a successful chemical manufacturing business with the emphasis on yeast and dyes. About 1837 he started to experiment first with electric batteries and then with motors. He invented a form of electromagnetic engine in which soft iron bars arranged on the periphery of a wooden cylinder, parallel to its axis, around which the cylinder could rotate, were attracted by fixed electromagnets. These were energized in turn by current controlled by a simple commutaring device. Electric current was produced by his batteries. His activities were brought to the attention of Michael Faraday and to the scientific world in general by a letter from Professor Forbes of King's College, Aberdeen. Davidson declined to patent his inventions, believing that all should be able freely to draw advantage from them, and in order to afford an opportunity for all interested parties to inspect them an exhibition was held at 36 Union Street, Aberdeen, in October 1840 to demonstrate his "apparatus actuated by electro-magnetic power". It included: a model locomotive carriage, large enough to carry two people, that ran on a railway; a turning lathe with tools for visitors to use; and a small printing machine. In the spring of 1842 he put on a similar exhibition in Edinburgh, this time including a sawmill. Davidson sought support from railway companies for further experiments and the construction of an electromagnetic locomotive; the Edinburgh exhibition successfully attracted the attention of the proprietors of the Edinburgh 585\& Glasgow Railway (E \& GR), whose line had been opened in February 1842. Davidson built a full-size locomotive incorporating his principle, apparently at the expense of the railway company. The locomotive weighed 7 tons: each of its two axles carried a cylinder upon which were fastened three iron bars, and four electromagnets were arranged in pairs on each side of the cylinders. The motors he used were reluctance motors, the power source being zinc-iron batteries. It was named Galvani and was demonstrated on the E \& GR that autumn, when it achieved a speed of 4 mph (6.4 km/h) while hauling a load of 6 tons over a distance of 1 1/2 miles (2.4 km); it was the first electric locomotive. Nevertheless, further support from the railway company was not forthcoming, although to some railway workers the locomotive seems to have appeared promising enough: they destroyed it in Luddite reaction. Davidson staged a further exhibition in London in 1843 without result and then, the cost of battery chemicals being high, ceased further experiments of this type. He survived long enough to see the electric railway become truly practicable in the 1880s.
    [br]
    Bibliography
    1840, letter, Mechanics Magazine, 33:53–5 (comparing his machine with that of William Hannis Taylor (2 November 1839, British patent no. 8,255)).
    Further Reading
    1891, Electrical World, 17:454.
    J.H.R.Body, 1935, "A note on electro-magnetic engines", Transactions of the Newcomen Society 14:104 (describes Davidson's locomotive).
    F.J.G.Haut, 1956, "The early history of the electric locomotive", Transactions of the Newcomen Society 27 (describes Davidson's locomotive).
    A.F.Anderson, 1974, "Unusual electric machines", Electronics \& Power 14 (November) (biographical information).
    —1975, "Robert Davidson. Father of the electric locomotive", Proceedings of the Meeting on the History of Electrical Engineering Institution of Electrical Engineers, 8/1–8/17 (the most comprehensive account of Davidson's work).
    A.C.Davidson, 1976, "Ingenious Aberdonian", Scots Magazine (January) (details of his life).
    PJGR / GW

    Biographical history of technology > Davidson, Robert

  • 10 Stephenson, George

    [br]
    b. 9 June 1781 Wylam, Northumberland, England
    d. 12 August 1848 Tapton House, Chesterfield, England
    [br]
    English engineer, "the father of railways".
    [br]
    George Stephenson was the son of the fireman of the pumping engine at Wylam colliery, and horses drew wagons of coal along the wooden rails of the Wylam wagonway past the house in which he was born and spent his earliest childhood. While still a child he worked as a cowherd, but soon moved to working at coal pits. At 17 years of age he showed sufficient mechanical talent to be placed in charge of a new pumping engine, and had already achieved a job more responsible than that of his father. Despite his position he was still illiterate, although he subsequently learned to read and write. He was largely self-educated.
    In 1801 he was appointed Brakesman of the winding engine at Black Callerton pit, with responsibility for lowering the miners safely to their work. Then, about two years later, he became Brakesman of a new winding engine erected by Robert Hawthorn at Willington Quay on the Tyne. Returning collier brigs discharged ballast into wagons and the engine drew the wagons up an inclined plane to the top of "Ballast Hill" for their contents to be tipped; this was one of the earliest applications of steam power to transport, other than experimentally.
    In 1804 Stephenson moved to West Moor pit, Killingworth, again as Brakesman. In 1811 he demonstrated his mechanical skill by successfully modifying a new and unsatisfactory atmospheric engine, a task that had defeated the efforts of others, to enable it to pump a drowned pit clear of water. The following year he was appointed Enginewright at Killingworth, in charge of the machinery in all the collieries of the "Grand Allies", the prominent coal-owning families of Wortley, Liddell and Bowes, with authorization also to work for others. He built many stationary engines and he closely examined locomotives of John Blenkinsop's type on the Kenton \& Coxlodge wagonway, as well as those of William Hedley at Wylam.
    It was in 1813 that Sir Thomas Liddell requested George Stephenson to build a steam locomotive for the Killingworth wagonway: Blucher made its first trial run on 25 July 1814 and was based on Blenkinsop's locomotives, although it lacked their rack-and-pinion drive. George Stephenson is credited with building the first locomotive both to run on edge rails and be driven by adhesion, an arrangement that has been the conventional one ever since. Yet Blucher was far from perfect and over the next few years, while other engineers ignored the steam locomotive, Stephenson built a succession of them, each an improvement on the last.
    During this period many lives were lost in coalmines from explosions of gas ignited by miners' lamps. By observation and experiment (sometimes at great personal risk) Stephenson invented a satisfactory safety lamp, working independently of the noted scientist Sir Humphry Davy who also invented such a lamp around the same time.
    In 1817 George Stephenson designed his first locomotive for an outside customer, the Kilmarnock \& Troon Railway, and in 1819 he laid out the Hetton Colliery Railway in County Durham, for which his brother Robert was Resident Engineer. This was the first railway to be worked entirely without animal traction: it used inclined planes with stationary engines, self-acting inclined planes powered by gravity, and locomotives.
    On 19 April 1821 Stephenson was introduced to Edward Pease, one of the main promoters of the Stockton \& Darlington Railway (S \& DR), which by coincidence received its Act of Parliament the same day. George Stephenson carried out a further survey, to improve the proposed line, and in this he was assisted by his 18-year-old son, Robert Stephenson, whom he had ensured received the theoretical education which he himself lacked. It is doubtful whether either could have succeeded without the other; together they were to make the steam railway practicable.
    At George Stephenson's instance, much of the S \& DR was laid with wrought-iron rails recently developed by John Birkinshaw at Bedlington Ironworks, Morpeth. These were longer than cast-iron rails and were not brittle: they made a track well suited for locomotives. In June 1823 George and Robert Stephenson, with other partners, founded a firm in Newcastle upon Tyne to build locomotives and rolling stock and to do general engineering work: after its Managing Partner, the firm was called Robert Stephenson \& Co.
    In 1824 the promoters of the Liverpool \& Manchester Railway (L \& MR) invited George Stephenson to resurvey their proposed line in order to reduce opposition to it. William James, a wealthy land agent who had become a visionary protagonist of a national railway network and had seen Stephenson's locomotives at Killingworth, had promoted the L \& MR with some merchants of Liverpool and had carried out the first survey; however, he overreached himself in business and, shortly after the invitation to Stephenson, became bankrupt. In his own survey, however, George Stephenson lacked the assistance of his son Robert, who had left for South America, and he delegated much of the detailed work to incompetent assistants. During a devastating Parliamentary examination in the spring of 1825, much of his survey was shown to be seriously inaccurate and the L \& MR's application for an Act of Parliament was refused. The railway's promoters discharged Stephenson and had their line surveyed yet again, by C.B. Vignoles.
    The Stockton \& Darlington Railway was, however, triumphantly opened in the presence of vast crowds in September 1825, with Stephenson himself driving the locomotive Locomotion, which had been built at Robert Stephenson \& Co.'s Newcastle works. Once the railway was at work, horse-drawn and gravity-powered traffic shared the line with locomotives: in 1828 Stephenson invented the horse dandy, a wagon at the back of a train in which a horse could travel over the gravity-operated stretches, instead of trotting behind.
    Meanwhile, in May 1826, the Liverpool \& Manchester Railway had successfully obtained its Act of Parliament. Stephenson was appointed Engineer in June, and since he and Vignoles proved incompatible the latter left early in 1827. The railway was built by Stephenson and his staff, using direct labour. A considerable controversy arose c. 1828 over the motive power to be used: the traffic anticipated was too great for horses, but the performance of the reciprocal system of cable haulage developed by Benjamin Thompson appeared in many respects superior to that of contemporary locomotives. The company instituted a prize competition for a better locomotive and the Rainhill Trials were held in October 1829.
    Robert Stephenson had been working on improved locomotive designs since his return from America in 1827, but it was the L \& MR's Treasurer, Henry Booth, who suggested the multi-tubular boiler to George Stephenson. This was incorporated into a locomotive built by Robert Stephenson for the trials: Rocket was entered by the three men in partnership. The other principal entrants were Novelty, entered by John Braithwaite and John Ericsson, and Sans Pareil, entered by Timothy Hackworth, but only Rocket, driven by George Stephenson, met all the organizers' demands; indeed, it far surpassed them and demonstrated the practicability of the long-distance steam railway. With the opening of the Liverpool \& Manchester Railway in 1830, the age of railways began.
    Stephenson was active in many aspects. He advised on the construction of the Belgian State Railway, of which the Brussels-Malines section, opened in 1835, was the first all-steam railway on the European continent. In England, proposals to link the L \& MR with the Midlands had culminated in an Act of Parliament for the Grand Junction Railway in 1833: this was to run from Warrington, which was already linked to the L \& MR, to Birmingham. George Stephenson had been in charge of the surveys, and for the railway's construction he and J.U. Rastrick were initially Principal Engineers, with Stephenson's former pupil Joseph Locke under them; by 1835 both Stephenson and Rastrick had withdrawn and Locke was Engineer-in-Chief. Stephenson remained much in demand elsewhere: he was particularly associated with the construction of the North Midland Railway (Derby to Leeds) and related lines. He was active in many other places and carried out, for instance, preliminary surveys for the Chester \& Holyhead and Newcastle \& Berwick Railways, which were important links in the lines of communication between London and, respectively, Dublin and Edinburgh.
    He eventually retired to Tapton House, Chesterfield, overlooking the North Midland. A man who was self-made (with great success) against colossal odds, he was ever reluctant, regrettably, to give others their due credit, although in retirement, immensely wealthy and full of honour, he was still able to mingle with people of all ranks.
    [br]
    Principal Honours and Distinctions
    President, Institution of Mechanical Engineers, on its formation in 1847. Order of Leopold (Belgium) 1835. Stephenson refused both a knighthood and Fellowship of the Royal Society.
    Bibliography
    1815, jointly with Ralph Dodd, British patent no. 3,887 (locomotive drive by connecting rods directly to the wheels).
    1817, jointly with William Losh, British patent no. 4,067 (steam springs for locomotives, and improvements to track).
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, Longman (the best modern biography; includes a bibliography).
    S.Smiles, 1874, The Lives of George and Robert Stephenson, rev. edn, London (although sycophantic, this is probably the best nineteenthcentury biography).
    PJGR

    Biographical history of technology > Stephenson, George

  • 11 проходимый

    1) passable

    2) <med.> patent
    3) permeable
    4) practicable

    Русско-английский технический словарь > проходимый

  • 12 проходимый

    1) General subject: negotiable (о вершинах, дорогах и т. п.), passable, pervious to, practicable (о дороге), traversable, walkable
    2) Medicine: patent, patulous
    3) Bookish: pervious
    4) Mathematics: permeable

    Универсальный русско-английский словарь > проходимый

  • 13 Black, Harold Stephen

    [br]
    b. 14 April 1898 Leominster, Massachusetts, USA
    d. 11 December 1983 Summitt, New Jersey, USA
    [br]
    American electrical engineer who discovered that the application of negative feedback to amplifiers improved their stability and reduced distortion.
    [br]
    Black graduated from Worcester Polytechnic Institute, Massachusetts, in 1921 and joined the Western Electric Company laboratories (later the Bell Telephone Laboratories) in New York City. There he worked on a variety of electronic-communication problems. His major contribution was the discovery in 1927 that the application of negative feedback to an amplifier, whereby a fraction of the output signal is fed back to the input in the opposite phase, not only increases the stability of the amplifier but also has the effect of reducing the magnitude of any distortion introduced by it. This discovery has found wide application in the design of audio hi-fi amplifiers and various control systems, and has also given valuable insight into the way in which many animal control functions operate.
    During the Second World War he developed a form of pulse code modulation (PCM) to provide a practicable, secure telephony system for the US Army Signal Corps. From 1963–6, after his retirement from the Bell Labs, he was Principal Research Scientist with General Precision Inc., Little Falls, New Jersey, following which he became an independent consultant in communications. At the time of his death he held over 300 patents.
    [br]
    Principal Honours and Distinctions
    Institute of Electronic and Radio Engineers Lamme Medal 1957.
    Bibliography
    1934, "Stabilised feedback amplifiers", Electrical Engineering 53:114 (describes the principles of negative feedback).
    21 December 1937, US patent no. 2,106,671 (for his negative feedback discovery.
    1947, with J.O.Edson, "Pulse code modulation", Transactions of the American Institute of Electrical Engineers 66:895.
    1946, "A multichannel microwave radio relay system", Transactions of the American Institute of Electrical Engineers 65:798.
    1953, Modulation Theory, New York: D.van Nostrand.
    1988, Laboratory Management: Principles \& Practice, New York: Van Nostrand Rheinhold.
    Further Reading
    For early biographical details see "Harold S. Black, 1957 Lamme Medalist", Electrical Engineering (1958) 77:720; "H.S.Black", Institute of Electrical and Electronics Engineers Spectrum (1977) 54.
    KF

    Biographical history of technology > Black, Harold Stephen

  • 14 Claudet, Antoine François Jean

    [br]
    b. 12 August 1797 France
    d. 27 December 1867 London, England
    [br]
    French pioneer photographer and photographic inventor in England.
    [br]
    He began his working life in banking but soon went into glassmaking and in 1829 he moved to London to open a glass warehouse. On hearing of the first practicable photographic processes in 1834, Claudet visited Paris, where he received instruction in the daguerreotype process from the inventor Daguerre, and purchased a licence to operate in England. On returning to London he began to sell daguerreotype views of Paris and Rome, but was soon taking and selling his own views of London. At this time exposures could take as long as thirty minutes and portraiture from life was impracticable. Claudet was fascinated by the possibilities of the daguerreotype and embarked on experiments to improve the process. In 1841 he published details of an accelerated process and took out a patent proposing the use of flat painted backgrounds and a red light in dark-rooms. In June of that year Claudet opened the second daguerreotype portrait studio in London, just three months after his rival, Richard Beard. He took stereoscopic photographs for Wheatstone as early as 1842, although it was not until the 1850s that stereoscopy became a major interest. He suggested and patented several improvements to viewers derived from Brewster's pattern.
    Claudet was also one of the first photographers to practise professionally Talbot's calotype process. He became a personal friend of Talbot, one of the few from whom the inventor was prepared to accept advice. Claudet died suddenly in London following an accident that occurred when he was alighting from an omnibus. A memoir produced shortly after his death lists over forty scientific papers relating to his researches into photography.
    [br]
    Principal Honours and Distinctions
    FRS 1853.
    Further Reading
    "The late M.Claudet", 1868, Photographic News 12:3 (obituary).
    "A.Claudet, FRS, a memoir", 1968, (reprinted from The Scientific Review), London: British Association (a fulsome but valuable Victorian view of Claudet).
    H.Gernsheim and A.Gernsheim, 1969, The History of Photography, rev. edn, London (a comprehensive account of Claudet's daguerreotype work).
    H.J.P.Arnold, 1977, William Henry Fox Talbot, London (provides details of Claudet's relationship with Talbot).
    JW

    Biographical history of technology > Claudet, Antoine François Jean

  • 15 Farnsworth, Philo Taylor

    [br]
    b. 19 August 1906 Beaver, Utah, USA
    d. 11 March 1971 Salt Lake City, Utah, USA
    [br]
    American engineer and independent inventor who was a pioneer in the development of television.
    [br]
    Whilst still in high school, Farnsworth became interested in the possibility of television and conceived many of the basic features of a practicable system of TV broadcast and reception. Following two years of study at the Brigham Young University in Provo, Utah, in 1926 he cofounded the Crocker Research Laboratories in San Francisco, subsequently Farnsworth Television Inc. (1929) and Farnsworth Radio \& Television Corporation, Fort Wayne, Indiana (1938). There he began a lifetime of research, primarily in the field of television. In 1927, with the backing of the Radio Corporation of America (RCA) and the collaboration of Vladimir Zworykin, he demonstrated the first all-electronic television system, based on his early ideas for an image dissector tube, the first electronic equivalent of the Nipkow disc. With this rudimentary sixty-line system he was able to transmit a recognizable dollar sign and file the first of many TV patents. From then on he contributed to a variety of developments in the fields of vacuum tubes, radar and atomic-power generation, with patents on cathode ray tubes, amplifying and pick-up tubes, electron multipliers and photoelectric materials.
    [br]
    Principal Honours and Distinctions
    Institute of Radio Engineers Morris Leibmann Memorial Prize 1941.
    Bibliography
    1930, British patent nos. 368,309 and 368,721 (for his image dissector).
    1934, "Television by electron image scanning", Journal of the Franklin Institute 218:411 (describes the complete image-dissector system).
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: A History of the American Television Industry 1925–1941, University of Alabama Press.
    O.E.Dunlop Jr, 1944, Radio's 100 Men of Science.
    G.R.M.Garratt \& A.H.Mumford, 1952, "The history of television", Proceedings of the Institution of Electrical Engineers III A Television 99.
    KF

    Biographical history of technology > Farnsworth, Philo Taylor

  • 16 Perry, John

    [br]
    b. 14 February 1850 Garvagh, Co. Londonderry, Ireland (now Northern Ireland)
    d. 4 August 1920 London, England
    [br]
    Irish engineer, mathematician and technical-education pioneer.
    [br]
    Educated at Queens College, Belfast, Perry became Physics Master at Clifton College in 1870 until 1874. This was followed by a brief period of study under Sir William Thomson in Glasgow. He was then appointed Professor of Engineering at the Imperial College of Japan in Tokyo, where he formed a remarkable research partnership with W.E. Ayrton. On his return to England he became Professor of Engineering and Mathematics at City and Guilds College, Finsbury. Perry was the co-inventor with Ayrton of many electrical measuring instruments between 1880 and 1890, including an energy meter incorporating pendulum clocks and the first practicable portable ammeter and voltmeter, the latter being extensively used until superseded by instruments of greater accuracy. An optical indicator for high-speed steam engines was among Perry's many patents. Having made a notable contribution to education, particularly in the teaching of mathematics, he turned his attention in the latter period of his life to the improvement of the gyrostatic compass.
    [br]
    Principal Honours and Distinctions
    FRS 1885. President, Institution of Electrical Engineers 1900. Whitworth Scholar 1870.
    Bibliography
    28 April 1883, jointly with Ayrton, British patent no. 2,156 (portable ammeter and voltmeter).
    1900, England's Neglect of Science, London (for Perry's collected papers on technical education).
    Further Reading
    D.W.Jordan, 1985, "The cry for useless knowledge: education for a new Victorian technology", Proceedings of the Institution of Electrical Engineers 132 (Part A): 587– 601.
    GW

    Biographical history of technology > Perry, John

  • 17 Steinheil, Carl August von

    [br]
    b. 1801 Roppoltsweiler, Alsace
    d. 1870 Munich, Germany
    [br]
    German physicist, founder of electromagnetic telegraphy in Austria, and photographic innovator and lens designer.
    [br]
    Steinheil studied under Gauss at Göttingen and Bessel at Königsberg before jointing his parents at Munich. There he concentrated on optics before being appointed Professor of Physics and Mathematics at the University of Munich in 1832. Immediately after the announcement of the first practicable photographic processes in 1839, he began experiments on photography in association with another professor at the University, Franz von Kobell. Steinheil is reputed to have made the first daguerreotypes in Germany; he certainly constructed several cameras of original design and suggested minor improvements to the daguerreotype process. In 1849 he was employed by the Austrian Government as Head of the Department of Telegraphy in the Ministry of Commerce. Electromagnetic telegraphy was an area in which Steinheil had worked for several years previously, and he was now appointed to supervise the installation of a working telegraphic system for the Austrian monarchy. He is considered to be the founder of electromagnetic telegraphy in Austria and went on to perform a similar role in Switzerland.
    Steinheil's son, Hugo Adolph, was educated in Munich and Augsburg but moved to Austria to be with his parents in 1850. Adolph completed his studies in Vienna and was appointed to the Telegraph Department, headed by his father, in 1851. Adolph returned to Munich in 1852, however, to concentrate on the study of optics. In 1855 the father and son established the optical workshop which was later to become the distinguished lens-manufacturing company C.A. Steinheil Söhne. At first the business confined itself almost entirely to astronomical optics, but in 1865 the two men took out a joint patent for a wide-angle photographic lens claimed to be free of distortion. The lens, called the "periscopic", was not in fact free from flare and not achromatic, although it enjoyed some reputation at the time. Much more important was the achromatic development of this lens that was introduced in 1866 and called the "Aplanet"; almost simultaneously a similar lens, the "Rapid Rentilinear", was introduced by Dallmeyer in England, and for many years lenses of this type were fitted as the standard objective on most photographic cameras. During 1866 the elder Steinheil relinquished his interest in lens manufacturing, and control of the business passed to Adolph, with administrative and financial affairs being looked after by another son, Edward. After Carl Steinheil's death Adolph continued to design and market a series of high-quality photographic lenses until his own death.
    [br]
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E.Epstean, New York (a general account of the Steinheils's work).
    Most accounts of photographic lens history will give details of the Steinheils's more important work. See, for example, Chapman Jones, 1904, Science and Practice of Photography, 4th edn, London: and Rudolf Kingslake, 1989, A History of the Photographic Lens, Boston.
    JW

    Biographical history of technology > Steinheil, Carl August von

См. также в других словарях:

  • Patent drawing — Patent law (patents for inventions) …   Wikipedia

  • European Patent Convention — European patent law …   Wikipedia

  • Tesla coil — at Questacon the National Science and Technology center in Canberra, Australia Uses Application in educational demonstrations, novelty lighting, as well as music Inventor …   Wikipedia

  • Antonio Meucci — Born 13 April 1808(1808 04 13) Florence, Italy …   Wikipedia

  • Wireless energy transfer — or wireless power is the transmission of electrical energy from a power source to an electrical load without artificial interconnecting conductors. Wireless transmission is useful in cases where interconnecting wires are inconvenient, hazardous,… …   Wikipedia

  • Invention of radio — Great Radio Controversy redirects here. For the album by the band Tesla, see The Great Radio Controversy. Contents 1 Physics of wireless signalling 2 Theory of electromagnetism …   Wikipedia

  • Alexander Graham Bell — Infobox Person name = Alexander Graham Bell image size = 225px caption = Portrait of Alexander Graham Bell c. 1910 birth date = 3 March 1847 birth place = Edinburgh, Scotland, UK death date = death date and age|1922|8|2|1847|3|3|df=y death place …   Wikipedia

  • Wardenclyffe Tower — (1901 ndash; 1917) also known as the Tesla Tower, was an early wireless telecommunications aerial tower designed by Nikola Tesla and intended for commercial trans Atlantic wireless telephony, broadcasting, and to demonstrate the transmission of… …   Wikipedia

  • Automotive lighting — Blinker redirects here. For other uses, see Blinker (disambiguation). Not to be confused with Magneti Marelli company AL Automotive Lighting. For lights in seafaring and aviation, see navigation light. The lighting system of a motor vehicle… …   Wikipedia

  • William Murdoch — Infobox Scientist name = William Murdoch box width = image width = caption = birth date = Birth date|1754|08|21 birth place = Cumnock, East Ayrshire, Scotland death date = dda|1839|11|15|1754|08|21 death place = Handsworth, nr. Birmingham,… …   Wikipedia

  • Government procurement in the United States — is based on many of the same principles as commercial contracting, but is subject to special laws and regulation as described below. Persons entering into commercial contracts are pretty much free to do anything that they can agree on. Each… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»